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● CSF PGRN and multiple neuroinflammatory markers were increased with tau-related 20 

neurodegeneration.  21 

● PGRN was positively linked with neuroinflammatory markers in TN+ population.  22 

● Neuroinflammatory markers modulated the association of PGRN with CSF Aβ42 in TN+ 23 

population. 24 

● PGRN predicted slower cognitive decline and lower AD risk only in TN+ population. 25 

 26 

 27 

 28 

Abstract 29 

Progranulin (PGRN) and neuroinflammatory markers increased over the course of 30 

Alzheimer’s disease (AD). We aimed to determine whether neuroinflammation could 31 

modulate the association of PGRN with amyloid pathologies. Baseline cerebrospinal fluid 32 

(CSF) PGRN and AD pathologies were measured for 965 participants, among whom 228 had 33 

measurements of CSF neuroinflammatory markers. Causal mediation analyses with 10,000 34 

bootstrapped iterations were conducted to explore the mediation effects within the framework 35 

of A/T/N biomarker profile. Increased levels of CSF PGRN and inflammatory markers 36 

(sTNFR1, sTNFR2, TGF-β1, ICAM1, and VCAM1) were associated with T- or N-positive 37 

(TN+) profile, irrespective of the amyloid pathology. In TN+ group, CSF PGRN was 38 

associated with increased levels of these inflammatory markers and CSF amyloid-β1-42 (p < 39 
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0.01). The neuroinflammatory markers significantly modulated (proportion: 20%~60%) the 40 

relationship of amyloid burden with CSF PGRN, which could predict slower cognitive 41 

decline and lower AD risk in the TN+ group. The abovementioned associations became 42 

non-significant in the TN- group. These findings indicated a close relationship between 43 

neuroinflammation and CSF PGRN in contributing to AD pathogenesis, and also highlighted 44 

the specific roles of PGRN in neurodegenerative conditions. Future experiments are 45 

warranted to verify the causal relationship. 46 
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PGRN progranulin  50 

CNS central nervous system 51 

AD Alzheimer’s disease 52 

sTNFR soluble tumor necrosis factor receptor 53 

ICAM1 intercellular cell adhesion molecule-1 54 

VCAM1 vascular cell adhesion molecule-1 55 

IL interleukin 56 

CSF cerebrospinal fluid 57 

Aβ β-amyloid 58 

ADNI Alzheimer's Disease Neuroimaging Initiative 59 

CDR clinical dementia rating 60 

ELISA enzyme-linked immunosorbent assay 61 

MSD mass spectrometry detector 62 

CV coefficient of variation 63 

ECLIA electrochemiluminescence immunoassays 64 
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ADAS Alzheimer’s disease assessment scale 65 

RAVLT Rey auditory verbal learning test 66 

MMSE Mini-Mental State Examination 67 

ANCOVAs one-way analyses of covariance 68 

 69 

 70 

 71 

 72 

 73 

1. Background 74 

Progranulin (PGRN) is a secreted glycoprotein ubiquitously expressed in peripheral 75 

organs and central nervous system (CNS). Its deficiency was associated with 76 

neuroinflammation (Ma et al., 2017; Takahashi et al., 2017) and neurodegenerative diseases 77 

(Götzl et al., 2018; Paushter et al., 2018) such as Alzheimer’s disease (AD) (Minami et al., 78 

2014; Xu et al., 2017; Xu et al., 2020). However, little is known about the biological 79 

mechanisms by which PGRN was involved in AD occurrence. Neuroinflammation plays a 80 

critical role in AD (Calsolaro and Edison, 2016). Inflammatory markers of CSF (e.g., 81 

transforming growth factor-beta 1 [TGF-β1] and interleukin-10 [IL-10]) or blood (e.g., 82 

soluble tumour necrosis factor receptor 1 [sTNFR1] and sTNFR2) were significantly elevated 83 

in AD patients compared to healthy controls (Shen et al., 2019). Interestingly, CSF PGRN 84 

was also found to be increased over the course of AD (Suarez-Calvet et al., 2018). These lines 85 
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of evidence suggested a potential link between PGRN and neuroinflammation in AD 86 

development, which has not been explored till now. It could be postulated that PGRN might 87 

interact with neuroinflammation to contribute to AD pathogenesis, leading to abnormal 88 

accumulation of pathological protein, such as β-amyloid (Aβ). To verify this hypothesis, we 89 

aimed to i) examine whether PGRN was associated with inflammatory activities in CNS, ii) 90 

explore the roles of neuroinflammation in modulating the influences of PGRN on amyloid 91 

pathologies, and iii) investigate the values of PGRN in predicting cognitive decline and AD 92 

risk, within the framework of A/T/N biomarker profile, using the Alzheimer's Disease 93 

Neuroimaging Initiative (ADNI). 94 

2. Methods 95 

2.1 Study participants 96 

ADNI is designed to develop clinical, imaging, genetic, and biochemical biomarkers for 97 

the early detection and tracking of AD. The participants are volunteers aged 55-90 years with 98 

normal or impaired cognition. Detailed information can be found at http://www.adni-info.org/ 99 

and in previous reports (Petersen et al., 2010; Trojanowski et al., 2010; Weiner et al., 2010). 100 

At baseline, each participant underwent an in-person interview of general health and 101 

functional ability, followed by a standardized assessment including a battery of 102 

neuropsychological tests. Follow-up data were collected during evaluations at sequential 103 

intervals of approximately 12 months. ADNI was approved by institutional review boards of 104 

all participating institutions, and written informed consent was obtained from all participants 105 
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or their guardians. In the present study, a total of 965 participants who had baseline 106 

measurements of CSF PGRN and AD core biomarkers, as well as longitudinal measurements 107 

of cognitive functions were included. Among these individuals, 228 had measurements of 108 

CSF inflammatory markers. 109 

2.2 Classification methods 110 

The classification methods were in line with 2018 NIA-AA “research framework” for 111 

AD diagnosis (Jack et al., 2018). In brief, participants were categorized into specific groups 112 

based on biomarker profile as described by the A/T/N scheme (Jack et al., 2016). The A/T/N 113 

scheme includes 3 biomarker groups: “A” aggregated amyloid pathology (as indicated by 114 

CSF Aβ1-42), “T” aggregated tau (as indicated by CSF p-tau181), and “N” neurodegeneration or 115 

neuronal injury (as indicated by CSF t-tau). “A+” participants refer to those with CSF Aβ1-42 116 

< 976.6 pg/ml; “T+” those with CSF p-tau181 > 21.8 pg/ml; and “N+” those with CSF t-tau > 117 

245 pg/ml. The CSF biomarker statuses established by these cutoffs were proven to be highly 118 

concordant with PET classification in ADNI (Hansson et al., 2018). Given that T and N 119 

groups were highly correlated, we merged them together to facilitate the analyses, producing 120 

a TN group: “TN+” indicates T+ or N+ and “TN-” indicates T- and N- (Suarez-Calvet et al., 121 

2018; Suarez-Calvet et al., 2019). 122 

2.3 CSF measurements of PGRN, inflammatory markers, and AD core biomarkers 123 

CSF procedural protocols in ADNI were described (Shaw et al., 2009). CSF PGRN was 124 

measured by a previously reported sandwich immunoassay using the Meso Scale Discovery 125 
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platform (Capell et al., 2011). All CSF samples were distributed randomly across plates and 126 

measured in duplicate. All the antibodies and plates were from a single lot in order to exclude 127 

variability between batches. The mean intraplate coefficient of variation (CV) was 2.2%; all 128 

duplicate measures had a CV < 15%. PGRN levels were corrected by inter-batch variation and 129 

corrected values were used for analyses (for the method see Appendix 1). CSF Aβ1-42, p-tau181, and 130 

t-tau were analyzed by the electrochemiluminescence immunoassays (ECLIA) Elecsys on a 131 

fully automated Elecsys cobas e 601 instrument and a single lot of reagents for each of the 132 

three measured biomarkers (provided in UPENNBIOMK9.csv file), as described previously 133 

(Hansson et al., 2018). These measurements are for explorative research use only. A total of 134 

eight types of CSF inflammatory markers, including four anti-inflammatory markers 135 

(sTNFR1, sTNFR2, TGF-β1, and IL-10) and four pro-inflammatory markers (intercellular 136 

cell adhesion molecule-1 [ICAM1], vascular cell adhesion molecule-1 [VCAM1], IL-6, and 137 

IL-7) were measured, using commercially available multiplex immunoassays (Millipore 138 

Sigma, Burlington, MA), as described previously (Craig-Schapiro et al., 2011). All samples 139 

were run in duplicate along with six standards on each plate. Samples were normalized across 140 

plates using CSF standard values. Precision of each analyte was calculated using inter-plate 141 

CV < 15%. 142 

2.4 Cognitive measures and AD diagnosis 143 

Global cognitive function was reflected by the total scores of Alzheimer’s Disease 144 

Assessment Scale (ADAS). Composite scores for executive and memory functions were 145 

constructed and validated by referring to the neuropsychological batteries (Crane et al., 2012; 146 
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Gibbons et al., 2012). Specifically, the indicators of executive functions include Category 147 

Fluency, WAIS-R Digit Symbol, Trails A & B, Digit Span Backwards, and clock drawing. 148 

The indicators of memory function include relevant items of the Rey Auditory Verbal 149 

Learning Test (RAVLT), ADAS, Logical Memory, and Mini-Mental State Examination 150 

(MMSE). The Clinical Dementia Rating (CDR) score was used to represent the clinical stage: 151 

“0” represents normal cognition, “0.5” represents very mild dementia, and “1” represents mild 152 

dementia. The National Institute of Neurological and Communication Disorders/Alzheimer’s 153 

Disease and Related Disorders Association (NINCDS–ADRDA) criteria (McKhann et al., 1984) 154 

was used for the diagnosis of probable AD. 155 

2.5 Statistical analysis 156 

Before the analyses, values as dependent variables were log10-transformed to achieve 157 

normal distributions as assessed by Kolmogorov-Smirnov test. All analyses were adjusted for 158 

age (continuous variable), gender (female = 1), educational level (continuous variable), 159 

APOE4 status (“44/34/24” = 1), and CDR score (categorical), except where specifically 160 

noted. 161 

First, one-way analyses of covariance (ANCOVAs) were performed to examine the 162 

associations of CSF PGRN and CSF inflammatory markers with the A/TN status. Four 163 

comparisons were separately conducted for each biomarker group, including A-/TN+ vs. 164 

A-/TN-, A+/TN+ vs. A+/TN- (for the associations with tau-related neurodegeneration), 165 

A+/TN+ vs. A-/TN+, and A+/TN- vs. A-/TN- (for the associations with amyloid pathology). 166 
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Next, multiple linear regressions were conducted to explore the associations of PGRN (an 167 

independent variable) with neuroinflammatory markers (dependent variables). Furthermore, 168 

we explored whether neuroinflammatory markers could modulate the association of PGRN 169 

with amyloid pathology. To achieve this, causal mediation analyses were conducted using 170 

linear regression models fitted based on the methods proposed by Baron and Kenny (Baron 171 

and Kenny, 1986). The direct effects, indirect effects, and the mediating proportion were 172 

estimated by Sobel’s test (Imai et al., 2010) with the significance determined using 10,000 173 

bootstrapped iterations.  174 

In addition, linear mixed effects (LME) models were used to estimate the longitudinal 175 

influences of CSF PGRN on cognitive functions. To facilitate the depiction, CSF PGRN was 176 

categorized into three groups (low, moderate, and high) using cutoffs of 1,396 pg/ml and 177 

1,684 pg/ml according to the tertiles of the concentration. The LME models had random 178 

intercepts and slopes for time and an unstructured covariance matrix for the random effects, 179 

and included the interaction between time (continuous) and the dependent variable (PGRN) as 180 

a predictor. Regression diagnostics were conducted and outliers (n = 23) were excluded to 181 

indicate that all models met the necessary assumptions: model residuals were normally 182 

distributed and did not exhibit heteroscedasticity. Finally, the influence of CSF PGRN on the 183 

risk of incident AD was explored using the Kaplan-Meier method. All above analyses were 184 

conducted within the framework of A/T/N biomarker profile. 185 

Sensitivity analyses were conducted as follows. a) the analyses were repeated after 186 

excluding outlier values (n = 7) of CSF markers, defined as values situated outside the 3 187 
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standard deviations from the mean; b) rs5848 genotype of GRN gene, which was associated 188 

with PGRN levels, was added as a covariate in analyses with CSF PGRN as the dependent 189 

variable. The results barely changed after these analyses. c) CDR was considered as a 190 

grouping variable for which we found that CDR does not play a significant role when 191 

comparing the biomarker levels (e-Table 1 and e-Figure 1). 192 

R version 3.5.1 (packages including “lm”, “ggplot2”, “mediate”, and “nlme”) and 193 

GraphPad Prism 7.00 software were used for statistical analyses and figure preparation. All 194 

tests were two-tailed, with a significance level of α = 0.05. 195 

3. Results 196 

3.1 Participants characteristics 197 

A total of 965 participants (44% females, 73.1 ± 7.4 years) were included (e-Table 1), 198 

among whom 228 subjects (43% females, 74.8 ± 7.1 years) with neuroinflammation data 199 

available were included in the mediation analysis (Table 1). According to the A/TN profile, 200 

48 were categorized within the A-/TN- group, 27 A+/TN-, 120 A+/TN+, and 33 A-/TN+.  201 

3.2 PGRN was associated with neuroinflammatory markers in TN-positive group 202 

    We separately draw the distribution patterns of CSF PGRN and 8 marker proteins of 203 

neuroinflammation following the A/TN profile. We found CSF levels of 5 out of 8 markers 204 

(including sTNFR1, sTNFR2, TGF-β1, ICAM1, and VCAM1) exhibited similar variation 205 

tendency with CSF PGRN (Figure 1). The association analyses indicated that both PGRN and 206 

five neuroinflammatory markers were higher in TN+ profile, but lower in A+ group (except 207 
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for TGF-β1, p < 0.0001, e-Table 2), after adjusting for age, gender, education, APOE4 status, 208 

CDR score, and A/TN status. No significant associations were revealed of A/TN status with 209 

IL-6, IL-7, and IL-10 (e-Table 2). We further found that PGRN was positively related to the 210 

abovementioned neuroinflammatory markers, but the associations were significant only in 211 

TN+ profile (Figure 2). Interestingly, PGRN showed significant associations with ICAM1 212 

(adjusted p = 0.03) and TGF-β1 (adjusted p = 0.001) only in A+/TN+ group. These findings 213 

strengthened a potentially strong link between PGRN and neuroinflammation in specific 214 

populations within the TN+ biomarker profile. 215 

3.3 Neuroinflammation modulated the association of PGRN with lower amyloid burden in 216 

TN-positive group 217 

We further asked whether inflammatory markers could modulate the association of 218 

PGRN with amyloid pathology. Similarly, positive relationships of CSF Aβ42 with both CSF 219 

PGRN (Figure 3A) and CSF inflammatory markers (Figure 3B to 3F) were revealed in the 220 

TN+, but not in the TN- group. In total population irrespective of the biomarker framework, 221 

the mediation analyses indicated that the association of PGRN with alleviated cerebral 222 

amyloid deposition was modulated by specific neuroinflammatory markers, including 223 

sTNFR1 (proportion = 50.3%, p = 0.006), sTNFR2 (proportion = 28.4%, p = 0.01), and 224 

VCAM1 (proportion = 44.2%, p = 0.008) (e-Figure 2). These results remained significant 225 

after Bonferroni correction. Within the biomarker framework, the abovementioned mediation 226 

effects of neuroinflammation (sTNFR1, sTNFR2, and VCAM1) were significant only in TN+ 227 

profile, with the mediation proportion ranged from 30% to 60% (e-Figure 3). Similar results 228 
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were obtained in A+/TN+ group (Figure 3G): ICAM1 and TGF-β1 were specifically revealed 229 

as mediating molecules for the association between PGRN and amyloid burden in A+/TN+ 230 

group (e-Figure 4).  231 

3.4 CSF PGRN predicted slower cognitive decline and lower risk of AD in TN-positive group 232 

Based on the above findings, it could be postulated that the roles of PGRN in protecting 233 

AD or cognitive decline might be, at least partially, influenced by the TN status. To verified 234 

this hypothesis, the following analyses were conducted. We explored whether the values of 235 

CSF PGRN in predicting longitudinal changes of cognitive functions were influenced by the 236 

TN status. We found protective roles of CSF PGRN in cognitive function, including the 237 

general cognition (p = 0.008, Figure 4A), memory function (p = 0.0002, Figure 4B), and 238 

executive function (p = 0.028, Figure 4C) only in TN+ group. Furthermore, higher CSF 239 

PGRN was associated with lower risk of incident AD in TN+ group (Figure 4D), but not in 240 

TN- group (Figure 4E), as revealed by ADNI cohort of 779 non-demented samples who are 241 

followed up to 10 years.  242 

4. Discussion 243 

Herein, we for the first time explored the relationships of PGRN with neuroinflammatory 244 

makers in CNS and evaluated their synergetic mediating effects on amyloid pathology. Our 245 

results indicated that neuroinflammation might modulate the association of PGRN with 246 

amyloid pathologies and the mediating associations were limited to TN+ group. The 247 
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predicting values of PGRN on cognitive decline or AD were also constrained to individuals 248 

who are suffering from neurodegeneration due to neuronal damages (TN-positive group). 249 

PGRN was proposed to be a hallmark of microglia-mediated neuroinflammation 250 

(Suarez-Calvet et al., 2018). Similar with PGRN, CSF sTREM2, a marker of microglial 251 

activation, was found to be elevated in early AD with TN+ profile (Suarez-Calvet et al., 252 

2019). It was reported that CSF PGRN was associated with CSF sTREM2 only in AD and 253 

non-Alzheimer's disease pathophysiology (SNAP) groups (Suarez-Calvet et al., 2018), 254 

suggesting PGRN might be a hallmark of neuroinflammation occurring with 255 

neurodegeneration. Though no causal conclusion can be made due to the cross-sectional 256 

design, these findings indicated a close relationship between PGRN and neuroinflammation in 257 

neurodegeneration. 258 

Neuroinflammation plays a critical role in modulating AD pathologies. We and other 259 

teams previously reported increased peripheral levels of sTNFR1, sTNFR2 (Buchhave et al., 260 

2010; Shen et al., 2019; Zhang et al., 2014) and IL-6, as well as elevated CSF levels of IL-10 261 

and TGF-β1 in AD compared with the controls (Shen et al., 2019). TNFRs could be activated 262 

by binding of soluble TNF, a hallmark of neuroinflammation as well as neurodegenerative 263 

conditions (McCoy and Tansey, 2008), and could be cleaved to generate sTNFRs. The 264 

circulating levels of sTNFR were positively associated with the levels of plasma amyloid and 265 

tau (Buchhave et al., 2010; Zhang et al., 2014) and the conversion rate to dementia (Buchhave 266 

et al., 2010). Another study on transgenic mice showed TNFR1 deletion reduced Aß 267 

pathology, microglia activation, neuron loss, and memory deficits (He et al., 2007). In 268 
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concordance with the present study, previous studies found CSF levels of ICAM1 and 269 

VCAM1 were increased during the preclinical and prodromal stages of AD (Janelidze et al., 270 

2018; Rauchmann et al., 2020). 271 

It was found that PGRN could suppress neuroinflammation following induced toxic 272 

stimuli or injury (Ma et al., 2017; Martens et al., 2012). Our results suggested PGRN might 273 

interact with specific neuroinflammatory markers to reduce amyloid burden. This suggests 274 

that inflammation activities might play a “double-edged sword” role in dealing with 275 

neurodegeneration. Similar clues were reported for microglia, which adopted numerous fates 276 

with homeostatic microglia and a microglial neurodegenerative phenotype representing two 277 

opposite ends (Götzl et al., 2019). Another possible explanation is that increased PGRN could 278 

be a counter response to the elevated inflammatory markers to counteract their detrimental 279 

consequences. More experiments are needed to validate these assumptions. 280 

We found PGRN and specific neuroinflammatory markers were higher in individuals 281 

with TN+ profile and lower in those with A+ profile. This might be explained by that 1) an 282 

increase of CSF PGRN can be a direct consequence of microglial expression or a 283 

consequence of neuronal cell death releasing PGRN into neuropil, 2) PGRN and specific 284 

neuroinflammatory markers were involved in the metabolism of amyloid pathology, such as 285 

the clearance of aggregated amyloid via normal immune activation and lysosomal 286 

functioning. Future in vitro studies are needed to verify these clinical findings. Moreover, our 287 

results indicated that the values of higher levels of PGRN in predicting lower AD risk were 288 

constrained to those who had significant neuronal damages, which needed to be verified in 289 
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future larger studies. However, it is still unclear whether regulating PGRN in TN+ status 290 

could confer benefits to lower amyloid burden and AD risk. Aβ plaques with PGRN were 291 

identified in low-plaque individuals, suggesting PGRN was involved in early plaque 292 

formation. However, the impacts of PGRN on AD pathologies, especially β-amyloid (Aβ), 293 

was disputable in in-vivo or in-vitro studies. Takahashi et al., reported PGRN deficiency 294 

significantly reduces diffuse amyloid plaque growth (Takahashi et al., 2017), and Hosokawa 295 

et al., also reported PGRN haploinsufficiency reduced amyloid beta deposition in APP mouse 296 

model (Hosokawa et al., 2018). On the contrary, Minami et al., (Minami et al., 2014) and Van 297 

Kampen JM et al., (Van Kampen and Kay, 2017) reported overexpression of PGRN reduced 298 

amyloid burden. Considering predicting values of PGRN varied according to the TN status, 299 

future experiments might need to consider this condition for development of precision 300 

medicine of AD. 301 

Additionally, it is noteworthy that PGRN is primarily a marker of lysosomal functioning 302 

(Paushter et al., 2018) besides neuroinflammation. Disturbances of lysosomal function can 303 

result in multiple pathological features, such as disordered clearance and abnormal 304 

accumulations of insoluble proteins (e.g., amyloid and tau), increased autophagy, etc 305 

(Colacurcio et al., 2018). Therefore, future studies are warranted to explore whether PGRN 306 

could influence AD via such pathways as neuronal survival, autophagy, and blood brain 307 

barrier (BBB) integrity.  308 

5. Limitation 309 
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Caution is warranted given that several limitations existed for the present study. The 310 

mediation associations only reflect but cannot equal to the causal relationships. Longitudinal 311 

cohort as well as well-designed experiments should be conducted to verify our findings about 312 

the influences of PGRN on neuroinflammatory markers and AD pathologies. No experiments 313 

were conducted in the present study. The in vivo and in vitro studies are thus warranted to 314 

examine the causal relationships of neuronal injuries or tau-related neurodegeneration with 315 

PGRN, neuroinflammatory markers, and amyloid metabolism. 316 

6. Conclusions 317 

Our study provided preliminary clues linking PGRN to neuroinflammatory activities in 318 

TN+ populations. PGRN could interact with neuroinflammation to influence amyloid burden. 319 

The relationships were restricted to those with neurodegenerative changes and might help 320 

lower risks of cognitive decline and AD risk. However, the causal relationship warrant 321 

verification in future experiments. 322 

 323 
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 511 

 512 

Figure 1. Early increases of CSF PGRN and CSF five neuroinflammatory markers were 513 

associated with tau-related neurodegeneration. 514 

Scatter plot depicting CSF levels of PGRN and five neuroinflammatory markers (including 515 

sTNFR1, sTNFR2, TGF-β1, ICAM1, and VCAM1) for each of the four biomarker profiles, as 516 

defined by the A/T/N framework. The T (tau pathology) and N (neurodegeneration) group 517 

were merged because these two biomarker groups were highly correlated. Solid bars represent 518 

the mean and the standard deviation (SD). P-values were assessed by one-way ANCOVAs 519 

adjusted for age, gender, educational level, and CDR score. 520 

Abbreviations: A: Aβ pathology biomarker status; T: tau pathology biomarker status AD; N: 521 

neurodegeneration biomarker status; Alzheimer’s disease; CDR: clinical dementia rating; 522 

CSF: cerebrospinal fluid. 523 
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 524 

Figure 2 Relationship of CSF PGRN with CSF neuroinflammatory markers 525 

The x axis represents CSF PGRN level and the y axis represents CSF specific 526 

neuroinflammatory marker level. Each A/T/N biomarker profile is represented in a different 527 

color: A-/TN- are depicted in green, A+/TN- in blue, A+/TN+ in dark red, and A-/TN+ in 528 

orange. P-values were assessed by multiple linear regression models adjusted for age, gender, 529 

educational level, and CDR score. 530 

 531 
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Figure 3. Neuroinflammation modulates the association of PGRN with ameliorated cerebral 532 

amyloid-β burden in TN+ population 533 

The association of CSF PGRN (3A) and abovementioned CSF neuroinflammatory markers 534 

(3B to 3F) with CSF Aβ42 were only significant or stronger in TN+ group compared to TN- 535 

group. The mediating effects of neuroinflammatory markers (including sTNFR1, sTNFR2, 536 

and VCAM1) on the relationships of CSF PGRN with CSF Aβ42 were significant only in 537 

TN+ profile, with the mediation proportion ranged from 30% to 60% (3G). Interestingly, we 538 

also found smaller (10%~30%) but significant mediation effects of CSF PGRN in influencing 539 

association of CSF neuroinflammatory markers (sTNFR1, sTNFR2, and ICAM1) with CSF 540 

Aβ42 in TN+ profile (3G). Similar results were obtained in A+/TN+ group (3G). P-values 541 

were adjusted for age, gender, education, APOE4 status, and CDR score. * the results 542 

survived the Bonferroni correction. 543 
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 544 

Figure 4. Values of CSF PGRN in predicting cognitive decline and incident risk of AD, stratified 545 

by the TN status 546 

CSF PGRN were categorized into three tertiles (low, moderate, and high level) in order to 547 

facilitate the drawing. P-values were assessed by mixed-effect models adjusted for age, 548 

gender, education, APOE4 status, CDR, and amyloid status (A profile). We found protective 549 

roles of high CSF levels of PGRN in preventing decline of cognitive functions, including the 550 

general cognition (A), memory function (B), and executive function (C), in TN+ but no TN- 551 

profile. Moreover, higher CSF PGRN was associated with lower risk of incident AD in TN+ 552 

profile (D), but not in TN- profile (E). 553 

 554 
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 555 

Table 1 Demographic and clinical characteristics of the participants 556 

 

Total 

(n = 228) 

A−/TN− 

(n = 48) 

A+/TN− 

(n = 27) 

A+/TN+ 

(n = 120) 

A−/TN+ 

(n = 33) 

Age, mean (SD), y 74.8 (7.1) 74.5 (6.2) 74.4 (5.8) 74.5 (7.6) 76.5 (7.1) 

Female, n (%) 98 (43) 20 (42) 7 (26) 57 (47.5) 14 (42.4) 

Education, mean (SD), y 15.5 (3.0) 15.4 (2.8) 15.9 (2.8) 15.4 (3.1) 15.9 (3.1) 

APOE4 carriers, n (%) 116 (51) 8 (16.7) 15 (56) 87 (72.5) 6 (18.2) 

AD diagnosis, n (%) 60 (26.3) 2 (4.2) 7 (26) 46 (38.3) 5 (15.2) 

PGRN, mean (SD), pg/ml 1,570 (406) 1,554 (349) 1,521 (330) 1,550 (445) 1,705 (373) 

CSF AD core biomarkers, mean (SD), pg/ml 

Aβ42 941 (542) 1,444 (258) 593 (201) 602 (162) 1,725 (556) 

P-tau181p 29.1 (13.5) 16.9 (2.7) 16.2 (3.7) 36.6 (12.2) 30.1 (12.1) 

T-tau 297.5 (116) 192.8 (29) 176.5 (34) 357.5 (102) 331 (106) 

CSF neuroinflammatory markers, mean (SD), pg/ml 

sTNFR1 868 (204) 817 (147) 668 (119) 879 (189) 1,067 (199) 

sTNFR2 1,035 (251) 949 (180) 804 (130) 1,063 (240) 1,248 (260) 

TGF-β1 101.1 (31.6) 96.6 (26.3) 83.0 (26.2) 104 (31.4) 113.7 (36.4) 

IL-10 5.65 (2.48) 5.57 (2.53) 5.41 (2.50) 5.65 (2.44) 5.97 (2.62) 

ICAM1 374 (192) 327 (127) 331 (156) 379 (198) 461 (248) 

VCAM1 
41,349 

(19,167) 

36,343 

(11,764) 

30,944 

(10,796) 

40,690 

(18,467) 

59,522 

(23,834) 

IL-6 4.5 (2.8) 4.2 (1.8) 3.4 (5.4) 4.5 (2.9) 5.2 (3.6) 

                  



29 

 

IL-7 1.23 (1.00) 1.04 (0.81) 1.13 (0.68) 1.39 (1.15) 1.00 (0.79) 

Abbreviations: AD: Alzheimer’s disease; SD: standard deviation; PGRN: progranulin; sTNFR: soluble tumor 557 

necrosis factor receptor; ICAM1: intercellular cell adhesion molecule-1; VCAM1: vascular cell adhesion 558 

molecule-1; IL: interleukin; CSF: cerebrospinal fluid; Aβ: β-amyloid 559 
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